A Model-Based Approach for the Measurement of Eye Movements Using Image Processing
نویسنده
چکیده
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0 Introduction............................................................................... 1 2.0 Disk-Fitting Algorithm ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Assumptions.............................................................................. 5 2.2 Derivation of Least Squares Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Maximum Search .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Comparison Search Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Look-Up Tables for Relative Pixel Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 Initial Parameter Vector .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Image Threshold .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Subpixel Interpolation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Elliptic Appearance of Pupil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.0 Performance Evaluation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Effect of Random Image Noise .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Method .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1.1 Pupil Model............................................................................... 18 3.1.1.2 Random Noises and Blurring .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1.3 Data Measurement .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Performance With Occlusions of the Pupil Area .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Effect of Droopy Eyelid on the Disk-Fitting Algorithm ... . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Effect of Light Reflection on Disk-Fitting Algorithm................................ 27 3.2.3 Comparison of Centroid and Disk-Fitting Algorithms With Simulated Artifacts 30 4.0 Implementation and Examples.......................................................... 33 5.0 Conclusions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 References .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
منابع مشابه
A Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کاملDesign and Implementation of an Exergame Using Image Processing Techniques for Telerehabilitation of Patients with Physical Disabilities
Introduction: In recent years, due to physical problems of patients or restrictions on social interactions in COVID-19 pandemic, telerehabilitation based on virtual reality (VR) attracted the attention of many researchers. Method: In this applied research, a Kinect sensor and an image processing software were used to design and implement a motion simulator for rehabilitation of patients with...
متن کاملDesign and Implementation of an Exergame Using Image Processing Techniques for Telerehabilitation of Patients with Physical Disabilities
Introduction: In recent years, due to physical problems of patients or restrictions on social interactions in COVID-19 pandemic, telerehabilitation based on virtual reality (VR) attracted the attention of many researchers. Method: In this applied research, a Kinect sensor and an image processing software were used to design and implement a motion simulator for rehabilitation of patients with...
متن کاملThe Mechanical Design of Drowsiness Detection Using Color Based Features
This paper demonstrates design and fabrication o f a mechatronic system for human drowsiness detection. This system can be used in multiple places. For example, in factories, it is used on some dangerous machinery and in cars in order t o prevent the operator o r driver from falling asleep. This system is composed of three parts: (1) mechanical, (2) electrical and (3) image processing system. A...
متن کاملEye-Tracking Method’ Usage for Understanding the Cognitive Processes in Multimedia Learning
Introduction: Designing multimedia learning environments should consist of the evidence-based study and principals about the human learning process. Eye tracking is a way based on the learner processing of learning materials which presented in multimedia learning environments. The aim of the study was to examine the use of the eye-tracking method to investigate the cognitive processes in m...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997